Eigenvalues and Eigenfunctions of $L^{\mathbf{2}}$ and L_{z}

We note that the expression for L_{z} is simpler than those for L_{x} and L_{y}. Therefore, it is convenient to obtain simultaneous eigenfunctions of L^{2} and L_{z}.

Let us denote the eigenvalues of L^{2} and L_{z} by $\lambda \hbar^{2}$ and $m_{l} \hbar$, respectively, and let the corresponding common eigenfunction be $Y(\theta, \phi)$. Then the two eigenvalue equations can be written as

$$
\begin{equation*}
L^{2} Y(\theta, \phi)=\lambda \hbar^{2} Y(\theta, \phi) \tag{7.11}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{z} Y(\theta, \phi)=m_{l} \hbar Y(\theta, \phi) \tag{7.12}
\end{equation*}
$$

The subscript l is attached to m for later convenience. Substituting for L^{2} from (7.10) into (7.11), we obtain

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}+\lambda Y=0 \tag{7.13}
\end{equation*}
$$

This equation can be solved by using the method of separation of variables. We write

$$
\begin{equation*}
Y(\theta, \phi)=\Theta(\theta) \Phi(\phi) \tag{7.14}
\end{equation*}
$$

Substituting in (7.13), multiplying by $\sin ^{2} \theta / Y(\theta, \phi)$ and rearranging, we obtain

$$
-\frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}}=\frac{\sin ^{2} \theta}{\Theta}\left[\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}+\lambda \Theta\right)\right]
$$

The variables have separated out, and therefore, each side must be equal to a constant. We take this constant to be m_{l}^{2} for reason which will become clear soon and obtain the following ordinary differential equations:

$$
\begin{equation*}
\frac{d^{2} \Phi}{d \phi^{2}}+m_{l}^{2} \Phi=0 \tag{7.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left(\lambda-\frac{m_{l}^{2}}{\sin ^{2} \theta}\right) \Theta=0 \tag{7.16}
\end{equation*}
$$

Equation (7.15) can be immediately solved to give

$$
\Phi(\phi)=A e^{i m_{l} \phi}
$$

where A is an arbitrary constant. For $\Phi(\phi)$ to be single-valued we must have
or

$$
\begin{aligned}
\Phi(\phi+2 \pi) & =\Phi(\phi) \\
e^{2 \pi m_{l} i} & =1 \\
m_{l} & =0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

Taking $A=1 / \sqrt{2 \pi}$, we obtain the normalized solutions of (7.15):

$$
\begin{equation*}
\Phi_{m_{l}}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m_{l} \phi} ; \quad m_{l}=0, \pm 1, \pm 2, \ldots \tag{7.17}
\end{equation*}
$$

It can be easily shown that these functions form an orthonormal set. That is,

$$
\begin{equation*}
\int_{0}^{2 \pi} \Phi_{m_{l}^{\prime}}^{*}(\phi) \Phi_{m_{l}}(\phi) d \phi=\delta_{m_{l} m_{l}^{\prime}} \tag{7.18}
\end{equation*}
$$

We can immediately note here that the function $\Phi_{m_{l}}(\phi)$ is an eigenfunction of the operator L_{z} with the eigenvalue $m_{l} \hbar$. Indeed,

$$
\begin{align*}
L_{z} \Phi_{m_{l}}(\phi) & =-i \hbar \frac{\partial}{\partial \phi}\left(\frac{1}{\sqrt{2 \pi}} e^{i m_{l} \phi}\right) \\
& =m_{l} \hbar\left(\frac{1}{\sqrt{2 \pi}} e^{i m_{l} \phi}\right) \\
& =m_{l} \hbar \Phi_{m_{l}}(\phi) \tag{7.19}
\end{align*}
$$

Spherical Harmonics

After solving equation (7.16) and using (7.14) we obtain the common eigenfunctions of the operators L^{2} and L_{z} as

$$
\begin{array}{|ll|}
Y_{l m_{l}}(\theta, \phi)=(-1)^{m_{l}}\left[\frac{(2 l+1)\left(l-m_{l}\right)!}{4 \pi\left(l+m_{l}\right)!}\right]^{1 / 2} & P_{l}^{m_{l}}(\cos \theta) e^{i m_{l} \phi}, m_{l} \geq 0 \\
\text { and } \\
Y_{l m_{l}}(\theta, \phi)=(-1)^{m_{l}} Y_{l,-m_{l}}^{*}(\theta, \phi), & m_{l} \leq 0 \tag{7.21}
\end{array}
$$

These functions are known as the spherical harmonics.
Where,
l is called the orbital angular momentum quantum number. $l=0,1,2,3, \ldots$
m_{l} is called the magnetic quantum number for a given l, there are only $(2 l+1)$ possible values of m_{l}, $m_{l}=-l,-l+1, \ldots, 0, \ldots, l-1, l$
$P_{l}(\xi)$ denoted, Legendre polynomials, where l is the degree of the polynomial.
Also, since $P_{l}(\xi)$ contains only even or odd powers of ξ, depending on whether l is even or odd, we have

$$
P_{l}(-\xi)=(-1)^{l} P_{l}(\xi)
$$

The first few Legendre polynomials are:

$$
\begin{align*}
& P_{0}(\xi)=1 \\
& P_{1}(\xi)=\xi \\
& P_{2}(\xi)=\frac{1}{2}\left(3 \xi^{2}-1\right) \\
& P_{3}(\xi)=\frac{1}{2}\left(5 \xi^{3}-3 \xi\right) \tag{7.23}\\
& P_{4}(\xi)=\frac{1}{8}\left(35 \xi^{4}-30 \xi^{2}+3\right) \\
& P_{5}(\xi)=\frac{1}{8}\left(63 \xi^{5}-70 \xi^{3}+15 \xi\right)
\end{align*}
$$

The spherical harmonics satisfy the orthonormality condition

$$
\begin{align*}
& \int Y_{l^{\prime} m_{l}^{\prime}}^{*}(\theta, \phi) Y_{l m_{l}}(\theta, \phi) d \Omega \\
= & \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} Y_{l^{\prime} m_{l}^{\prime}}^{*}(\theta, \phi) Y_{l m_{l}}(\theta, \phi) \sin \theta d \theta \\
= & \delta_{l l^{\prime}} \delta_{m_{l} m_{l}^{\prime}} \tag{7.24}
\end{align*}
$$

where the integration is over the full range of the angular variables (θ, ϕ) and $d \Omega$ is the element of solid angle: $d \Omega=\sin \theta d \theta d \phi$.
We have

$$
\begin{align*}
& L^{2} Y_{l m_{l}}(\theta, \phi)=l(l+1) \hbar^{2} Y_{l m_{l}}(\theta, \phi), \quad l=0,1,2, \ldots \tag{7.25}\\
& \text { and } \\
& L_{z} Y_{l m_{l}}(\theta, \phi)=m_{l} \hbar Y_{l m_{l}}(\theta, \phi), \quad\left|m_{l}\right| \leq l \tag{7.26}
\end{align*}
$$

The first few spherical harmonics are given in Table:

