Eigenvalues and Eigenfunctions of L? and L,

We note that the expression for L, is simpler than those for L, and L,,. Therefore, it is
convenient to obtain simultaneous eigenfunctions of L? and L, .

Let us denote the eigenvalues of L? and L, by Ah? and m;h, respectively,
and let the corresponding common eigenfunction be ¥Y(60, ¢). Then the two
eigenvalue equations can be written as

L?Y(6, ¢) = Ah*Y(6, ¢) ..(7.11)
and

L.Y(6, ¢)=mh Y(6, ¢) .(7.12)

The subscript [ is attached to m for later convenience. Substituting for L? from (7.10) into
(7.11), we obtain

2
l i[sinl’?a—y] + I +AY =0 ..(7.13)
sin 6 00 00 sin® 0 9¢°

This equation can be solved by using the method of separation of variables. We write
Y(6, 9) = ©(6) D(9) --(7.14)

Substituting in (7.13), multiplying by sin26/Y (8, ¢) and rearranging, we obtain

2 . 2
1d® _snf) | i(smed—eue]
® do T

© |sinf do

The variables have separated out, and therefore, each side must be equal to a constant. We take
this constant to be m? for reason which will become clear soon and obtain the following
ordinary differential equations:

d«? =0 ...(7.15)

and

sin 6 d6 o) | sin’6

Equation (7.15) can be immediately solved to give
(I)(Q)) — Aem!l;q)

where A is an arbitrary constant. For ®(¢) to be single-valued we must have

D(¢ + 2m) = D(¢)

\ .
or g2mrmi = |

or m=0, 1, £2, ...



Taking A = 1/v2m , we obtain the normalized solutions of (7.15):

‘D;r;f(ﬁb):%emw; m=0,+1,%+2,... .(7.17)

J2r

It can be easily shown that these functions form an orthonormal set. That is,

2,
(Dm'((r}j) (Dm (Q)) dqj - 6m m’ (718)
0 ! I i

We can immediately note here that the function ®,, (¢) is an eigenfunction
of the operator L. with the eigenvalue m;4. Indeed,

L, (I)mf((b) = —ih— (71 eim;qb]

= mh (% ei’rmﬂa)
N2r
= m;h (Df,,g((,}j) ...(7.19)

Spherical Harmonics

After solving equation (7.16) and using (7.14) we obtain the common eigenfunctions of the
operators L? and L, as

12
) — ! ; ...(7.20
Ty (8. 6) = (~1y" | GLEDU=mDL oo gy gm0 20 (7.20)
f A (1+m,)!
and
m * PP 7.21
YJ’mF(95 q)) = (_ 1) ! Y;__””(G, ¢')S m? <0 ( )

These functions are known as the spherical harmonics.
Where,
[ is called the orbital angular momentum quantum number. ! = 0,1, 2,3, ...

m, is called the magnetic quantum number for a given [, there are only (21 + 1) possible
values of m;, m=-l,-1+1,..,0,..,1 —1,1

P, (&) denoted, Legendre polynomials, where [ is the degree of the polynomial.

Also, since P/(&) contains only even or odd powers of &, depending on whether
[ 1s even or odd, we have

..(7.22)



Pi(=&) = (1) Pi(&)

The first few Legendre polynomials are:

Fy(S)=1

P(&)=¢

P(&) - %(352 T}

1%(5)%(553— 3¢)

|

P() =%(355“— 3082 + 3)

1’5(5)=§(63§5—7O§3+ 158)

The spherical harmonics satisfy the orthonormality condition

J. Y);'m’z(gn ‘p) Yr'i'?.',,(gn ¢) dQ)

2 T .
= ["do [ Yiu (6, 6) Y (6, 6) sin6 do
0 0 1 1

= 6”” 5m}mj,’

...(7.23)

...(7.24)

where the integration is over the full range of the angular variables (6, ¢) and
dQ is the element of solid angle: dCQ2 = sin6 d6 d¢.

We have

and
LZ Y.’ntg(ea ¢) = th Yé;mf(ev ¢)5

L’ Y, (6,¢)=1(+Dr* Y, (6,¢). 1=0,12,...

im;| <1

The first few spherical harmonics are given in Table:

...(7.25)

...(7.26)
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