Eigenvalues and Eigenfunctions of L^2 and L_z

We note that the expression for L_z is simpler than those for L_x and L_y . Therefore, it is convenient to obtain simultaneous eigenfunctions of L^2 and L_z .

Let us denote the eigenvalues of L^2 and L_z by $\lambda \hbar^2$ and $m_l \hbar$, respectively, and let the corresponding common eigenfunction be $Y(\theta, \phi)$. Then the two eigenvalue equations can be written as

$$L^{2}Y(\theta, \phi) = \lambda \hbar^{2}Y(\theta, \phi) \qquad \dots (7.11)$$

and

$$L_z Y(\theta, \phi) = m_l \hbar Y(\theta, \phi) \qquad \dots (7.12)$$

The subscript *l* is attached to *m* for later convenience. Substituting for L^2 from (7.10) into (7.11), we obtain

$$\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial Y}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2 Y}{\partial\phi^2} + \lambda Y = 0 \qquad \dots (7.13)$$

This equation can be solved by using the method of separation of variables. We write

$$Y(\theta, \phi) = \Theta(\theta) \Phi(\phi) \qquad \dots (7.14)$$

Substituting in (7.13), multiplying by $sin^2\theta/Y(\theta,\phi)$ and rearranging, we obtain

$$-\frac{1}{\Phi}\frac{d^2\Phi}{d\phi^2} = \frac{\sin^2\theta}{\Theta} \left[\frac{1}{\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta} + \lambda\Theta\right)\right]$$

The variables have separated out, and therefore, each side must be equal to a constant. We take this constant to be m_l^2 for reason which will become clear soon and obtain the following ordinary differential equations:

$$\frac{d^2\Phi}{d\phi^2} + m_1^2 \Phi = 0 \qquad ...(7.15)$$

and

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta} \right) + \left(\lambda - \frac{m_l^2}{\sin^2\theta} \right) \Theta = 0 \qquad \dots (7.16)$$

Equation (7.15) can be immediately solved to give

$$\Phi(\phi) = A e^{im_l \phi}$$

where A is an arbitrary constant. For $\Phi(\phi)$ to be single-valued we must have

or
or

$$\Phi(\phi + 2\pi) = \Phi(\phi)$$

 $e^{2\pi m_l i} = 1$
 $m_l = 0, \pm 1, \pm 2, \dots$

Taking $A = 1/\sqrt{2\pi}$, we obtain the normalized solutions of (7.15):

$$\Phi_{m_l}(\phi) = \frac{1}{\sqrt{2\pi}} e^{im_l\phi}; \qquad m_l = 0, \pm 1, \pm 2, \dots \qquad \dots (7.17)$$

It can be easily shown that these functions form an orthonormal set. That is,

$$\int_{0}^{2\pi} \Phi_{m_{l}'}^{*}(\phi) \ \Phi_{m_{l}}(\phi) \ d\phi = \delta_{m_{l}m_{l}'} \qquad \dots (7.18)$$

We can immediately note here that the function $\Phi_{m_l}(\phi)$ is an eigenfunction of the operator L_z with the eigenvalue $m_l\hbar$. Indeed,

$$L_{z} \Phi_{m_{l}}(\phi) = -i\hbar \frac{\partial}{\partial \phi} \left(\frac{1}{\sqrt{2\pi}} e^{im_{l}\phi} \right)$$
$$= m_{l}\hbar \left(\frac{1}{\sqrt{2\pi}} e^{im_{l}\phi} \right)$$
$$= m_{l}\hbar \Phi_{m_{l}}(\phi) \qquad \dots (7.19)$$

Spherical Harmonics

After solving equation (7.16) and using (7.14) we obtain the common eigenfunctions of the operators L^2 and L_z as

$$Y_{lm_{l}}(\theta,\phi) = (-1)^{m_{l}} \left[\frac{(2l+1)(l-m_{l})!}{4\pi (l+m_{l})!} \right]^{1/2} P_{l}^{m_{l}}(\cos\theta) e^{im_{l}\phi}, m_{l} \ge 0 \qquad \dots (7.20)$$

and
$$Y_{lm_{l}}(\theta,\phi) = (-1)^{m_{l}} Y_{l,-m_{l}}^{*}(\theta,\phi), \qquad m_{l} \le 0 \qquad \dots (7.21)$$

These functions are known as the *spherical harmonics*.

Where,

l is called the *orbital angular momentum quantum number*. l = 0, 1, 2, 3, ...

 m_l is called the *magnetic quantum number* for a given l, there are only (2l + 1) possible values of m_l , $m_l = -l, -l + 1, ..., 0, ..., l - 1, l$

 $P_l(\xi)$ denoted, *Legendre polynomials*, where *l* is the degree of the polynomial.

Also, since $P_l(\xi)$ contains only even or odd powers of ξ , depending on whether l is even or odd, we have

...(7.22)

$$P_l(-\xi) = (-1)^l P_l(\xi)$$

The first few Legendre polynomials are:

$$P_{0}(\xi) = 1$$

$$P_{1}(\xi) = \xi$$

$$P_{2}(\xi) = \frac{1}{2}(3\xi^{2} - 1)$$

$$P_{3}(\xi) = \frac{1}{2}(5\xi^{3} - 3\xi)$$
...(7.23)
$$P_{4}(\xi) = \frac{1}{8}(35\xi^{4} - 30\xi^{2} + 3)$$

$$P_{5}(\xi) = \frac{1}{8}(63\xi^{5} - 70\xi^{3} + 15\xi)$$

The *spherical harmonics* satisfy the *orthonormality condition*

$$\int Y_{l'm'_{l}}^{*}(\theta, \phi) Y_{lm_{l}}(\theta, \phi) d\Omega$$

=
$$\int_{0}^{2\pi} d\phi \int_{0}^{\pi} Y_{l'm'_{l}}^{*}(\theta, \phi) Y_{lm_{l}}(\theta, \phi) \sin\theta d\theta$$

=
$$\delta_{ll'} \delta_{m_{l}m'_{l}}$$
...(7.24)

where the integration is over the full range of the angular variables (θ, ϕ) and $d\Omega$ is the element of solid angle: $d\Omega = \sin\theta \, d\theta \, d\phi$.

We have

$$L^{2} Y_{lm_{l}}(\theta, \phi) = l(l+1)\hbar^{2} Y_{lm_{l}}(\theta, \phi), \quad l = 0, 1, 2, ...$$

and
$$L_{z} Y_{lm_{l}}(\theta, \phi) = m_{l}\hbar Y_{lm_{l}}(\theta, \phi), \quad |m_{l}| \le l$$
...(7.26)

The first few spherical harmonics are given in Table:

Ι	m_l	Spherical Harmonic $Y_{lm_l}(\theta, \phi)$
0	0	$Y_{0,0} = \frac{1}{(4\pi)^{1/2}}$
1	0	$Y_{1,0} = \left(\frac{3}{4\pi}\right)^{1/2} \cos\theta$
	±1	$Y_{1,\pm 1} = \mp \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta \ e^{\pm i\phi}$
2	0	$Y_{2,0} = \left(\frac{5}{16\pi}\right)^{1/2} (3 \cos^2 \theta - 1)$
	±1	$Y_{2,\pm 1} = \mp \left(\frac{15}{8\pi}\right)^{1/2} \sin\theta \cos\theta e^{\pm i\phi}$
	±2	$Y_{2,\pm 2} = \left(\frac{15}{32\pi}\right)^{1/2} \sin^2\theta \ e^{\pm 2i\phi}$
	$\mathbf{p}_{1}(\mathbf{z}) = \mathbf{z}$	$\epsilon_1 = \epsilon_2 \sqrt{1/2}$

$P_1^1(\xi) = (1 - \xi^2)^{1/2}$	
$P_2^1(\xi) = 3(1-\xi^2)^{1/2} \xi$	
$P_2^2(\xi) = 3(1 - \xi^2)$	
$P_3^1(\xi) = \frac{3}{2}(1-\xi^2)^{1/2} (5\xi^2-1)$	
$P_3^2(\xi) = 15\xi(1-\xi^2)$	
$P_3^3(\xi) = 15(1-\xi^2)^{3/2}$	